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INTRODUCTION 

THERMAL transients in forced convection inside ducts have 
numerous applications in the design of control systems for 
heat exchangers. Only a limited amount of work is available 
[l-6] on this subject, and all such studies are concerned with 
the transients associated with variations in the wall surface 
temperature or the inlet temperature of the fluid. 

In this work analytic solutions are developed for unsteady 
laminar forced convection inside circular tubes and parallel 
plate channels resulting from a step variation in the wall heat 
flux. The generalized integral transform technique [7] and 
the classical Laplace transformation are used to develop a 
simple lowest order solution as well as higher order solutions. 

ANALYSIS 

We consider transient forced convection of a laminar, 
incompressible, thermally developing and hydrodynamically 
developed Newtonian flow inside a circular tube or a parallel- 
plate channel subjected to a prescribed wall heat flux. Axial 
conduction and viscous dissipation are neglected, and the 
physical properties are considered constant. The math- 
ematical formulation of the problem in dimensionless form 
is given by 
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The solution of the pure conduction problem (3) is readily 
obtained as 
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we split the problem into two parts as 
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where f3,(R, 7) is the solution of the following transient con- 
duction problem 
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and X,,,(y,, R) are the eigenfunctions and yrn the eigenvalues 
of the eigenvalue problem appropriate for system (3). 

To solve problem (4) we successively take the Laplace 
transform with respect to the 7 variable and integral trans- 
form with respect to the R variable to obtain an infinite 
system of ordinary differential equations in the Z variable 
for the double transform 8+(Z), i = 1,2,3,. of the function 

@(R, Z, 7). 
A lowest order solution is obtained by retaining only one 

term in the summation in the system of ordinary differential 
equation for m,(Z). The solution of this equation, after suc- 
cessive inversion with respect to the R and r variables, gives 
the lowest order solution Q,(R, Z, 7) for system (4) as 
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NOMENCLATURE 

4 hydraulic diameter, 4b for parallel-plate duct, s Laplace transform variable 
26 for circular tube T, initial and inlet fluid temperature 

10. IN reference lengths to nondimensionalize r- and U(R) normalized velocity profile, w(r)/w,, 
z-coordinates, respectively (I, = 6, 1, = Dh) W,” average velocity 

Nu(Z, T) local Nusselt number Z dimensionless axial coordinate, ctz/w,,l:. 

P 0 for parallel-plate channel, 1 for circular tube 

4W prescribed wall heat flux Greek symbols 
rwr R, radius of circular duct or half the spacing a thermal diffusivity 

between parallel plates, dimensional and f3(R, Z, r) dimensionless temperature, 
dimensionless, respectively (T(r, z, t) - T,)l(qJ&) 

R dimensionless radial coordinate, r/l, 7 dimensionless time, at/l:. 
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and $(pI, R) are the eigenfunctions and pi the eigenvalues of 
and, the higher order solution &(R,Z,Z) is determined by 

the eigenvalue problem in the R variable appropriate to the 
adding the correction term to B,(R, Z, T) as 

Laplace transform in the r variable of system (4). 
A higher order solution can be obtained by retaining more B,(R,Z, 7) = 0,(R, Z,T)- f FA,S,(Z, 5). (10) 

terms in the summation ; but, it makes the system of equa- 
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tions too involved to be useful for practical purposes. How- Using the lowest order analytical solution, the dimensionless 

ever, a straight-forward higher order solution can be average flow temperature and local Nusselt number are 

obtained by following a procedure similar to that described determined, respectively, as 

in ref. [6]. The higher order solution for @(R, Z, z) can be 
written as B,,,,(Z, T) = $ “$ 
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Similarly, using the higher order solution the corresponding 
quantities are 
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FIG. 1, Dimensionless wall temperature for a parallel-plate FIG. 3. Local Nusselt number for a parallel-plate channel at 
channel at different dimensionless times. different dimensionless times. 

The sign-cuunt method [&IO] is used to solve the eigen- 
vahre problems. 

RESULTS AND DlSCtJSSiON 

We now examine the thermal response of laminar flow 
inside a parallel-plate channel and a circular tube for a sud- 
denly apphed uniform wall heat flux. For computational 
purposes, the reference lengths are taken as lo = r, and 
IN = &, where D, is the hydraulic diameter of the conduit 
under consideration. Then the dimensionless velocity profile 
becomes 

J‘qR) = t*[r-Rq* 

c* = $J zf_+(2+P) 
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&parallel plate 
-= 
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Once the eigenvaiues, eige~u~t~o~s and the uo~a~j~tjo~ 
integrals are available, the tempemture distribution in the 
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FIG. 2. Dimensionless wah temp~~ture for a circular tube 
at different dimensionless times. 

Aow and the Nusseh number are readily computed from the 
expressions given previously. 

Here we consider results obtained from the iowest order 
soh8tion, s&e the exp&cit form is useful for ev~ua~n~ the 
Nussek number read@, and the fact that the lowest order 
sdution, for most practical purposes, su&iently accurate as 
pointed out by Cotta and iJIzi$k [6] for a related problem. 

Figures I and 2 show the dimensionless wall ~rn~rat~re 
for a paroled-plate channel and a circular tube, respectively, 
plotted as a function of the dimensionless axial coordinate 
in the range 1tY4 < Z 6 10-r for several different values of 
the dimensionless time T. Starting from the inlet, the wall 
temperature increases monotonically with both time and 
position along the conduit until the location character~~ng 
the beginning of the conduction region is reached. In the 
conduction region the wall temperature remains invariant 
with the axiaX distance but increases continuously with time. 
At a given time and position along the duct, the wall tem- 
perature for a circuiar tube is higher than that for a parallef- 
p&e channel. 

Figures 3 and 4 show the local Nusselt numbers for a 

45 F- 

FIG. 4. Local Nussclt number for a circular tube at diferent 
dimensionless times. 
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parallel-plate channel and a circular tube, respectively, plot- 
ted against the axial distance in the range 1 O- 4 < Z < IO- I 
for several different values of the dimensionless time r. Start- 
ing from the inlet region, the local Nusselt numbers decrease 
continuously with both increasing time and axial location 
along the conduit until the conduction region is reached. In 
the conduction region, the Nusselt number remains invariant 
with the position but decreases with increasing time. Eventu- 
ally, with increasing time, the local Nusselt numbers for both 
regions assume the well-known steady-state value. 
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1. INTRODUCTION 2. LIMITATIONS OF THE BOUNDARY LAYER 

NATURAL convection through externally heated and cooled 
APPROXIMATION 

enclosures is of interest in solar collector applications, in the We [5] previously indicated that a thermal boundary layer 
estimation of heat losses from double-pane windows, and with a constant thickness is developed along the partition 
in the calculation of heat losses from rooms. Numerous at high Rayleigh numbers for the enclosure with a central 
experimental and numerical computational studies have been 
reported explaining the heat transfer mechanism and pre- 
senting correlations for heat transfer rates for such systems. 
Excellent reviews [l, 21 are available and there is no need to 
repeat them here. 

The problem of primary interest in the literature [l, 21 is 
that of an enclosure with no partitions. However, in practical 
cases, a vertical partition is inserted into the enclosure to 
reduce heat losses by natural convection and thermal radi- 
ation. Reported studies of natural convection in a partitioned 
enclosure are limited. Duxbury [3] reported experiments with 
air-filled enclosures containing a central partition as shown 
in Fig. 1. Nakamura et al. [4] performed computational and 
experimental studies including the effect of thermal radiation 
for the same configuration as that of Duxbury. The present 
authors [5] proposed a boundary layer solution for this sys- 
tem and confirmed its validity by experiments. Tong and 
Gerner [6] reported the effect of partition position on the 
heat transfer rate by numerical computation and concluded 
that a central partition corresponding to W’jW = 0.5 pro- 
duces the greatest reduction in heat transfer. 

This study is an extension of the previous study [5]. We 
examine the limitations of the boundary layer approximation 
for various positions of the partition. We show that even if 
the partition deviates from the center of the enclosure, the 

Adiabatic 

I 
Gravity 

Diathermat 
.partition plate 

AT= Th - c 

x=x/w 

Y=y/W 

heat transfer rate is identical with that for the partition m 
the central position. This does not appear to have been FIG. 1. Schematic diagram of an enclosure divided by a 
studied previously. vertical partition. 


